주메뉴바로가기.. 본문바로가기

보안기술 ‘캡차’ 뚫는 인공지능 나왔다

카카오스토리 네이버밴드 구글플러스

2017년 10월 27일 07:30 프린트하기

각종 캡차 암호 이미지. - 사이언스 제공
각종 캡차 암호 이미지. - 사이언스 제공

사람과 컴퓨터를 구별하는 보안기술 ‘캡차(CAPTCHA)’를 풀어내는 인공지능(AI)이 등장했다.

 

미국의 AI 스타트업 비카리어스AI는 국제학술지 ‘사이언스’ 27일자에 사람의 시각처리 과정을 모사한 알고리즘인 반복피질네트워크(RCN·Recursive Cortical Network)를 개발해 캡차를 94.3%의 확률로 뚫었다고 밝혔다.
 

캡차는 텍스트를 의도적으로 비틀거나 덧칠해 컴퓨터가 인식하기 어렵게 만든 암호다. 주로 6~8자의 알파벳이나 숫자를 일그러뜨려 제시한 뒤 이를 올바르게 인식하면 사람으로 판명한다. 자동화한 프로그램이 캡차를 해독할 확률은 1% 이하라고 알려져 있었다.
 

비카리어스AI가 개발한 RCN은 사람이 물체를 인식하는 방식을 따라한 알고리즘이다. 사람은 알파벳 A를 몇 번 따라 쓰며 학습하면 그 글자를 뒤집고, 기울이고, 비틀어도 알아볼 수 있다. 이를 AI에 접목한 것이다.
 

 

비카리어스AI가 개발한 알고리즘이 텍스트를 인식하는 과정. - 비카리어스AI 제공
비카리어스AI가 개발한 알고리즘이 텍스트를 인식하는 과정. - 비카리어스AI 제공

RCN은 두 번의 과정을 거쳐 정보를 처리한다. 우선 문자의 윤곽선에 점을 찍어 좌표로 만들어 형태를 읽어낸다. 이후 윤곽선 내부 표면의 색이나 균일도 등을 읽는다. RCN은 새로운 글자를 접하면 이 과정을 거쳐 정보를 처리하고, 기존에 배운 글자와 비교해 결론을 낸다.
 

사실 캡차 암호를 푼 AI가 이번이 처음은 아니다. 하지만 기존 딥러닝으로 학습한 텍스트인식 AI는 암호의 형태가 조금만 달라져도 암호를 풀지 못한다. 가령 글자의 자간을 15%만 넓히면 38.4%, 25% 넓히면 7% 수준으로 해독률이 급격히 떨어진다.

 

반면 RCN은 자간이 달라지거나 비트는 방식을 바꿔도 해독률은 그대로다. 2300만 건의 이미지를 통해 학습한 딥러닝 알고리즘이 89.9%의 확률로 캡차를 해독하는 반면 RCN은 고작 500개의 이미지로 학습하고도 해독률이 더 높다. 효율을 5만 배가량 높인 셈이다.
 

딜립 조지 비카리어스AI 연구원은 “사람이 리캡차를 해독하는 확률도 87.4%에 그칠 정도로 암호의 형태가 복잡해졌지만 AI가 간단한 학습을 통해 이를 풀어낼 수 있다는 것을 실증했다. 더 발전된 보안 기술이 필요할 것”이라고 말했다.

카카오스토리 네이버밴드 구글플러스

2017년 10월 27일 07:30 프린트하기

 

혼자보기 아까운 기사
친구들에게 공유해 보세요

네이버밴드 구글플러스

이 기사가 괜찮으셨나요? 메일로 더 많은 기사를 받아보세요!

12 + 7 = 새로고침
###
과학기술과 관련된 분야에서 소개할 만한 재미있는 이야기, 고발 소재 등이 있으면 주저하지 마시고, 알려주세요. 제보하기